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Abstract Nomenclature 

A full-envelope, hybrid bank-to-turn (BTT)/ 
skid-to-turn (STT) autopilot design for an 
air-breathing air-to-air missile is carried out 
using the state-dependent Riccati equation 
(SDRE) technique of nonlinear control. 
Hybrid BTT/STT autopilot command logic 
is used to convert the guidance law's com- 
manded acceleration to angle of attack, 
side-slip, and bank angle reference com- 
mands for the autopilot. In the midcourse 
and terminal phases of flight, BTT control 
is employed to prevent engine flameout. 
In the endgame, STT control is employed 
to increase response time. As the missile 
approaches the endgame phase and passes a 
preset time-to-go threshold, STT commands 
are ramped into the BTT commands over 
a preselected time interval to attenuate 
transient responses. During this interval, the 
missile is flying hybrid BTT/STT. 

An SDRE nonlinear outer-loop controller 
converts the angle-of-attack, sideslip, and 
bank angle commands to body rates com- 
mands for the inner loop. An inner-loop 
SDRE nonlinear controller converts the body 
rate commands to fin commands. Hard 
bounds on the fin deflections are embedded 
within the inner-loop controller dynamics 
ensuring that the autopilot only commands 
deflections that are achievable. The non- 
linear design is evaluated using a detailed 
six-degrees-of-freedom simulation. 

u, v,w body-frame velocity components 
V missile speed 
M Mach 
a angle of attack 
ß angle of sideslip 
M bank angle about the velocity vector 
7 vertical flight-path angle 
P>9>r body-frame roll, pitch, and yaw rates 
4,9,4> Euler yaw, pitch, and roll angles 
S reference area 
d reference length 
M missile mass 
Q dynamic pressure 
h altitude 
9 gravity 
T thrust 
Sp, Sq,8r aileron, elevator, and rudder fin 

deflections 
lxi*yi i-z moments of inertia about body-frame 

x, y, z-axes 
CA axial force coefficient 
CY side force coefficient 
CN normal force coefficient 
Q rolling moment coefficient 
Cm pitching moment coefficient 
cn yawing moment coefficient 
a, aerodynamic force or moment derivative 

i with respect to state or input j 

'Associate Fellow AIAA 
t Senior Member AIAA 
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1. Introduction 

In order to achieve adequate performance over 
the entire envelope of operating conditions, the 
autopilot of a modern air-to-air tactical missile must 
be nonlinear. The nonlinearity arises either through 
the gain-scheduling of linear point designs [1, 2, 3, 4] 
or through the direct application of a nonlinear 
control technique to the problem. Nonlinear control 
methods which have been used for missile autopilot 
design include recursive backstepping [5], dynamic 
inversion [6, 7], sliding mode control [8], neural 
networks [9], linear parameter varying (LPV) con- 
trol [10, 11], and state-dependent Riccati equation 
(SDRE) techniques [12, 13, 14]. In [12], the SDRE 
Hi method was used to design a full-envelope pitch 
autopilot. The SDRE Hi design has the same struc- 
ture as a linear Hi design with all of the coefficient 
matrices being state-dependent. In [13, 14], the 
SDRE method of nonlinear regulation and the dif- 
ferential SDRE method were used, respectively, to 
develop integrated guidance/autopilot designs. The 
differential SDRE method has the same structure 
as the time-varying finite-horizon linear quadratic 
regulator (LQR) with all of the coefficient matrices 
being state-dependent and requires the solution of 
a state-dependent differential Riccati equation. 

In this paper, we use the algebraic SDRE method of 
nonlinear regulation to design a hybrid bank-to-turn 
(BTT)/ skid-to-turn (STT) autopilot for the control 
of an air-breathing air-to-air missile. BTT is used 
in the midcourse and terminal phases to prevent 
engine flameout. STT is used in the endgame to 
increase response time. To attenuate transient 
responses, the STT command logic is ramped into 
the BTT command logic as the missile transitions 
from the terminal phase to the endgame. 

The system dynamics are presented in the next 
section. An overview of the SDRE technique with 
integral servomechanism action is given in Section 
3. The SDRE outer-loop and inner-loop designs are 
carried out in Section 4. The BBT/STT command 
logic is described in Section 5. Design results evalu- 
ated in a detailed six-degrees-of-freedom simulation 
are presented in Section 6. The paper is then closed 
with a Summary section. 

2. System Dynamics 

The system dynamics for a generic air-to-air missile 
with the aerodynamic model and database generated 

in [15] are given below in terms of the missile's speed, 
angle of attack, sideslip, bank angle, roll rate, pitch 
rate, and yaw rate: 
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3. The SDRE Method 

Consider the autonomous, infinite-horizon, non- 
linear regulator problem for minimizing the 
performance index 

1 P°° 
J=-       xTQ(x)x + uTR(x)u dt 

2 Jo 
(8) 

with respect to the state x and control u subject to 
the nonlinear differential constraints: 

x = f{x) + B(£)u (9) 

where Q(x) > 0 and R{x) > 0 for all x and /(0) = 0. 

The SDRE approach for obtaining a subopti- 
mal, locally asymptotically stabilizing solution of 
problem (8)-(9) is: 

i) Use direct parameterization to bring the 
nonlinear dynamics to the state-dependent 
coefficient (SDC) form 

x = A(x)x + B(x)u (10) 

where 
f(x) = A(x)x (11) 

In the multi-variable case, it is well-known [16] that 
if f(x) is a continuously differentiable function of 
x, there is an infinite number of ways to factor 
f{x) into A{x)x. In order to obtain a valid solution 
of the SDRE, the pair {A(x),B(x)} has to be 
pointwise stabilizable in the linear sense for all x in 
the domain of interest. 

ii) Solve the state-dependent Riccati equation 

ATP + PA- PBR~1BTP + Q = 0 (12) 

to obtain P(x) > 0. 

iii) Construct the nonlinear feedback controller 
equation: 

u = -R(x)-1B{xfP{x)x. (13) 

In order to perform command following, the SDRE 
controller can be implemented as an integral servo- 
mechanism as demonstrated in [17]. This is accom- 
plished as follows. First, the state x is decomposed 
as 

x=     XT (14) 
xN 

where it is desired for the vector components of XT 

to track a reference command rc. The state vector 
x is then augmented with xj, the integral states of 
xT: 

r Xi  ~\ 

X=      XT (15) 

The augmented system is given by 

x = A(x)x + B(x)u 

where 

Ä(x) = 
0      I 

A{x)   0 
B(x) = 

0 
B(x) 

(16) 

(17) 

and the SDRE integral servo controller is given by 

u = -Ri^BixyPix) 
xi - / rcdt 

XT — rc 

XN 

(18) 

In order for the SDRE to have a solution, the point- 
wise detectability condition must be satisfied. This 
is accomplished by penalizing the integral states 
with the corresponding non-zero diagonal elements 
of Q{x). 

4. SDRE Control Design 

The autopilot has the two-loop structure shown in 
Figure 1. Guidance law acceleration commands are 
converted into angle-of-attack, sideslip, and bank- 
angle commands, ac,ßc,ßc, using the BTT/STT 
Logic presented in Section 5. The outer loop con- 
verts ac,ßc,ßc to roll-rate, pitch-rate, and yaw-rate 
commands, pc, qc, rc, for the inner loop. The inner 
loop then converts pc, qc, rc to fin commands for the 
actuators. 

BTT/STT 
Logic 

Pr s/-\ SDRE Outer 
Loop Servo 

*/-\ SDRE Inner 
Loop Servo t m . i~ 

rc , 

P.q,r 

1 ' 

aftn 

Actuators 

\ 
Missile 

Dynamics * * 

Figure 1: Autopilot Two-Loop Structure 



SDRE Outer-Loop Integral Servomechanism       We have 

For  the   outer   loop,   the   state   space   is  given 
by 

x = [ V   ai   a   ßi   ß   ßi   ß]J 

u = [ p   q   r ] (19) 

The current values of the fins 6p,6q,5r are used 
in this loop which is based on Eqs. _(l)-(4). The 
state-dependent factorization {A(x), B(x)} for the 
outer loop controller is given in the Appendix. 
Since thrust is not controllable, the controllability 
of the speed equation is due-* to a and ß. Speed 
controllability is lost when a and ß are both zero 
and ill-conditioning occurs in the Riccati equation 
when a and ß are small. A stablizing term of — 10V 
was added to the speed equation in the controller 
to eliminate the ill-conditioning. 

SDRE Inner-Loop Servomechanism 

For the inner loop, a hard bound of 30 degrees was 
imposed on the controls (the fin commands) and an 
SDRE servo was used instead of an integral servo. 
The hard bound is achieved by replacing 5p,Sq,5r 
in Eqs. (5)-(7) with saturation sine functions and 
using integral control. The saturation sine function 
(satsin) is defined as 

and is plotted in Figure 2 for m = 1. 

5p 
Sq 
Sr 

satsin(30,5p) 

satsin(30,5q) 
satsin(30, Sr) 

(21) 

with the fin coefficients expressed in units of per de- 
gree and 

8p = -Ap(<5p - Up) 

Sq = -\q(Sq - uq) 

Sr   =   —Xr(Sr — ur) 

(22) 

(23) 

(24) 

with Xp,Xq,\r being design parameters and 
UpjUgjibr being the new controls. Note that in 
Eqs. (5)-(7), the terms qSd(Ci0 cosa—C^ sma)/Ix, 
qSdCme/Iy, and qSd(Ci0sina + C^ cosa)/Iz are 
bias terms, i.e., state-independent terms. Normally, 
bias terms can be handled within the SDRE frame- 
work by multiplying and dividing these terms by a 
state that will never go to zero. Since p, q, r and 
5p, Sq, Sr can all go to zero, an additional state s with 
stable dynamics was added to the control equations 
for the purpose of absorbing the biases: 

s = —Xas (25) 

At each pass through the inner loop, s is set to its ini- 
tial value. Thus, for the inner loop, the state space 
is given by 

r m * sin(z)   for M < f, x = 

satsin(m, z) = • m               for 
^ — m             for 

*>f. 
z<-\ 

(20) 
p   q   r   a 

u = [ Up 

8p   Sq   Sr 

Un ur y (26) 

Figure 2: Saturation Sine Function 

with  the  fin  commands  being  computed  from 
Eq. (21). The state-dependent factorization 
{A(x),  B(x)}   for  the   inner  loop   controller  is 
given in the Appendix. 

Measurement and Estimation of the States 

If measurements of a and ß are not available, 
there are at least two means of producing estimates 
of these variables. One is to use a nonlinear observer 
that is based on Eqs. (2) and (3) augmented with 
the forcing terms Ka[az — qSCz(a,M)/M] and 
Kß[ay — qSCy(ß,M)/M], respectively, where Ka 

and Kß are the observer gains. The observer adjusts 
the estimates of a and ß based on the difference 
between the measured and predicted body accelera- 
tions. A second way is design a filter based on Eqs. 
(2), (3), (5), and (7) whose measurements are the 
body rates p, q, and r. With a and ß estimated, 
the bank angle ß can be computed as 



ß = tan 
.1 /si sin 9 cos ä sin ß — cos fl(cos ^ sin et sin /3 — sin <t> cos /3) 

cos <j> cos 0 cos d + sin $ sin ö 3 
The body accelerations and the body rates can be 
measured from the strapdown inertial measurement 
unit (IMU). 

5. Bank-to-Tum/Skid-to-Turn Command 
Logic 

BTT control is used in the midcourse and terminal 
phases of flight to prevent the air-breathing engine 
from flaming out. The BTT mode is broken into 
three commanded-acceleration magnitude regions in 
the inertial-frame (I) as defined below: 

UalK.lg then STT Control 
ßc = ß 

If .lg Ka^Klg then Reduced BTT Control 

ßc = ß + ^(^)-^ 

If a*. > lg then Full BTT Control 

^ = tan_1(if) 
In full BTT mode, 

ac   = 
\\ac\\M/qS)-\(Cz-CZaa)\ 

\CzJ 
ßc   =   0 

where ac = [ayc aZc]T is the commanded accelera- 
tion in the body frame. 

In reduced BTT mode, 

„  _ (\\ac\\M/gS)-\(Cz-C2aa)\ 
\CzJ 

COS {flfull - He) 

ßc = 
(\\gc\\M/qS)-(Cy-Cy0ß)   . 
 - am(Hfuii - He) 

where 

HfuU = tan  x I —f± 

Note that STT is used for small acceleration com- 
mands to prevent the missile from performing 180° 
rolls to achieve insignificant accelerations. STT con- 
trol is also used in the endgame for quicker response. 

In the STT mode, 

(gZcM/qS)-(Cz-CZaa) 

Cza 

(aycM/qS) - (CY - CYßß) 

0LC       = 

ßc     = 

ßc      =     P 
CYB 

As the missile approaches the endgame phase and 
passes a preset time-to-go threshold, STT com- 
mands are ramped into the BTT commands over 
a preselected time interval to attenuate transient re- 
sponses, i.e., 

ac <*c Cue 

ßc = p ßc + (1-P) ßc 
ßc  . I Vc J STT . Pc J BTT 

where p is a parameter that varies linearly from zero 
to one over the specified time interval. 

6. Simulation Results 

An investigation of the performance of the autopi- 
lot has been conducted using a detailed six-degrees- 
of-freedom simulation. The simulation imposes rate 
limits of 500°/sec on p and 200°/sec on q and r. The 
fin deflection limit is 30° and the actuator dynam- 
ics have a time constant of .01. In order to main- 
tain good autopilot response over the flight envelope, 
the state weighting on ai,a,ßi,ß was varied at low, 
medium and high altitudes until similar performance 
was achieved. The state weights were then curve fit 
to a quadratic function of dynamic pressure, q, which 
in turn is a function of missile velocity, one of the 
states in the outer-loop (OL). The following state 
and control weighting matrices were selected for the 
outer-loop controller: 

Q(X)OL = 

0 
922 (x) 

0 
0 
0 
0 
0 

0 
0 

933(a) 
0 
0 
0 
0 

0 
0 
0 

944(x) 
0 
0 
0 

0 
0 
0 
0 

955(x) 
0 
0 

0 
0 
0 
0 
0 

9ae(x) 
0 

0 
0 
0 
0 
0 
0 

100 

•R(X)OL = 
1 0 
0 1 
0     0 

where 

922(x) = 9-7285 * 10-11f(x)2 + 1.6818 * Hr5g(2) + .5114 

933(2) = 9.5209 * 10-I0q{x)2 - 1.7642 * 10~4q(£) + 88.1654 

944(2) = 922(a) 

955 (£) = 933(5) 

966(5) = min{100, [(ft - fj,c)180/-!r]2 + .001} 



By using a state-dependent weighting on the inte- 
gral of ß, we were able to enhance the rise time and 
reduce the overshoot of the ß response. At the same 
time, the state weighting on q and r was also varied 
at low, medium and high altitudes to aid in achieving 
the desired performance. Similarly, the state weights 
were curve fit to a quadratic function of dynamic 
pressure, q, which is a parameter that is provided to 
the inner-loop (IL) controller. The inner-loop state 
and control weightings were chosen to be: 

Q(Z)IL = 

20 0 0 0 0 0 0 
0 922 0 0 0 0 0 
0 0 933 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 

R(x)IL = 
.01 0 0 
0 .01 0 
0       0     .01 

where 
522 = 1-7187 * 10-1V - 1.9783 * \0~*q + 57.3033 

g33 = 1.6329 * 10-1V - 1.9498 * 10_4g+ 117.1089 

The     inverse     time     constants     used     were 
Ap = Aq = Ar — As = 1. 

The autopilot was evaluated at three different 
flight conditions, the first being the initial design 
condition of M = 2.7, h = 20000 ft. The second 
and third flight conditions were at the missiles 
minimum altitude M = 2.7, h = 100 ft and at a 
high altitude M = 2.7, h = 40000 ft, respectively. 
A commanded inertial acceleration of aVc = 10g, 
aZc = —10g was rotated into the body frame and 
used as input into the BTT/STT command logic 
and the vehicle responded in the BTT mode. Fig- 
ures 3-10 illustrate the performance of the autopilot 
at flight condition one and Figures 11-18 illustrate 
the performance of the autopilot at all three flight 
conditions (0.1 Kft - Dark, 20 Kft - Medium, 40 
Kft - Light). Figures 3-5 and 11-13 show the 
outer-loop tracking of ac,ßc,fj.c and Figures 6-8 
and 14-16 show the inner-loop tracking of pc, qc, rc. 
Figures 9 and 17 show the fin deflections for the 
two cases. Figures 10 and 18 show the autopilot 
tracking of the acceleration commands coming from 
the guidance law. As can be seen, both the inner 
and outer loop controllers are well-behaved and 
provide excellent tracking and response over a large 
region of the operating envelope. Further analysis 
of the operating envelope may result in additional 
scheduling of the weights in the inner and outer 
loop controllers as a function of dynamic pressure. 
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Figure 3: Commanded and Achieved Angles of At- 
tack (M = 2.7, h = 20Kft) 
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Figure 4:    Commanded and Achieved Angles of 
Sideslip (M = 2.7, h = 20ÜT/*) 
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Figure 5: Commanded and Achieved Bank Angles 
(M = 2.7, h = 20Kft) 
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Figure 7:   Commanded and Achieved Pitch Rates 
(M = 2.7,h = 2QKft) 

— Achieved 
■- Commanded 

0.5 
Time (Sec.) 

0.75 

Figure ID: Commanded and Achieved Body Accel- 
erations (M = 2.7, h = 20Kft) 
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Figure 8:   Commanded and Achieved Yaw Rates 
(M = 2.7, h = 20K ft) 
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Figure 11: Commanded and Achieved Angles of At- 
tack (M = 2.7, h = 0.1,20, AQKft) 
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Figure 12:   Commanded and Achieved Angles of 
Sideslip (M = 2.7, h = 0.1,20, AOKft) 
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Figure 15: Commanded and Achieved Pitch Rates 
(M = 2.7,h = 0.1,20,40K ft) 
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Figure 13: Commanded and Achieved Bank Angles 
{M = 2.7, h = 0.1,20,40ÜT/i) 
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Figure 16:   Commanded and Achieved Yaw Rates 
{M = 2.7, h = 0.1,20,4QKft) 
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Figure 14:   Commanded and Achieved Roll Rates 
{M = 2.7, h = 0.1,20,40Kft) 
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0.1, 20,40A"/*) 
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Figure 18: Commanded and Achieved Body Accel- 
erations (M = 2.7, h = 0.1,20,40A
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7. Summary 

The SDRE control method has been used to design 
a hybrid bank-to-turn/skid-to-turn autopilot for a 
generic air-breathing air-to-air missile. The autopi- 
lot is broken into an outer loop and an inner loop. 
The outer loop converts commanded angle-of-attack, 
sideslip, and bank angle to body rate commands for 
the inner loop. The inner loop converts the body 
rate commands to fin deflection commands. Hard 
bounds on the fin deflections are embedded within 
the inner-loop controller dynamics so the autopilot 
only commands fin deflections that are achievable. 
The design results are very promising and it is ex- 
pected that the autopilot will provide excellent per- 
formance in an air-to-air intercept scenario. Future 
work will include flying air-to-air intercepts to exer- 
cise the BTT, hybrid BTT/STT, and STT modes of 
the controller. Additionally, a wind model will be in- 
corporated into the simulation to validate the a and 
ß observers. Finally, the robustness of the autopilot 
will be evaluated in the presence of uncertainties in 
the aerodynamic coefficients. 
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Appendix 
Outer-Loop State-Dependent Coefficient Fac- 
torization 

qS _     sin a 

M      "a 

[17] 

o31    = 

?S_     sin/3 
Cy     — 

a 
°15    =MC^-ß 

V2cos/3 

MV2cos/3 

cos 7 cos /i — 
MV'cc«/3COaaC"° 

cosa(CV- (5p - CAT. 5q - CN. Sr) 
"Sp 

( ?S „ T  \ sin/3 

_ T        sin a qS sin a 

~~MV cos/3    a    + MV cos/3   A   a 

qS 
o51   = CY0 cos /3 + (CYSJ> cos ß + CsSp sin a sin ß)5j> 

— (CYS„ cos/3 + CN5„ sin a sin ß)Sq 

— (CYSr cos ß + CNST sin a sin ß)Sr 

qS „     sin a   .    „ 
o53   =ai-— CN0 sin/3 

My a 
SS sin ß 

a55   =(l-a1)-M^CNoaina—— + 

g sinfi 
a57    = — cos 7  

V n 

°71    = MV2 (CY° + °Y^ 5j> ~ CVä« Sq ~ CY5r 5r^cos A» cos /3 tan 7 

T   sin a   . T   sin a 
a73    =a2-rrr; sin/* tan 7 + a3 —— tan/3 

MV    a MV    a 
qS   _   sin a   . ?S  _   sin a 

-0:47777(7.4 sin/itan7-a5—— CA tan/3 
MV a MV a 
qS sin ot 

+ aaj^y(CN0+CNSpSp-CN,qSq-CNsrSr)—^-coaiieiaßtaa-r 

T sin/3 
a 75    = — cos a—— cos/* tan 7 

MV /3 

+ (1-<*3)—cos/?s.nc<— 

— (1 - 05)7777 3 er* sina—— 
MVcos/3 /3 

9^       /„ „       ,^,       ,      „       - > sin/3 
+ MVcos/3*   "" +   ^P P~   N*>5q-CNSrSr)c°8«"J" 

qS sin/3 
+ —— CA COS a cos /i ——- tan 7 

MV ß 

+ (1 - «6)^(^0 +CVäp5p-CArä(/<J 

_       , . sin/3 o sin/3 
— Ctf5r or) sin a cos 11—— tan 7 — — — cos 7 cos /1- 

,   T sin/i 
o77   = (1 — 0:2) sina tan7 

MV /i 

Vcos/3 

, qS .       sin/J 
- (1 - ai)——-CA^vna tan7 

MV /x 

qS._ .      „       r«       ,.% sin/j 
+ MV^     0+      s* s<> **    'C0'a tan7 

Ä(i) 

where 

all 0 al3 0 al5 0 0 
0 0 1 0 0 0 0 

a31 0 o33 0 0 0 0 
0 0 0 0 1 0 0 

a51    0    o53    0    a55    0    a57 
0      0      0      0      0      0       1 

a71    0    a73    0    a75    0    a77 

qS g T 
all    = -10 CA cosacos/3 — — sin7 + 7777 cosacos/! 

MV V MV 

MV 
qS 

MV 

(CYS   sin ß — Cj\rä   sin a cos /3)<5p 

(Cy{   sin/3 — CN5. sin a cos ß)Sq 

qS 
- 7777 (Cv-Jr sin ß - CArJr sin a cos ß)Sr 

Presently, the en's have been selected as 

&i = a-z = Q!3 = 0:4 = a^ = aß = .5 

B(i) = 

0 0 0 
0 0 0 

tan/3 cos a 1 — tan 0 sina 
0 0 0 

sina 0 — cos a 
0 0 0 

cos a 0 sina 
cos/3 
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Inner-Loop State-Dependent Coefficient Fac- 
torization 

A(x) = 

all al2 al3 ol4 al5 0I6 al7 
o21 a22 a23 o24 o25 a26 a27 
o31 o32 a33 o34 o35 o36 a37 

0 0        0 -As o45 a46 o47 
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B(x) = 

0 0 0 
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0 0 0 
0 0 0 
1 0 0 
0 1 0 
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where 
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Sq 
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a21   =   c*2 
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Presently, the cti's have been selected as 
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